Looks like the University of Utah is bogarting all of DARPA’s funding lately. Earlier this week they received $10.3 million to build a bionic arm and now we learn they got $3.7 million to study limb regeneration. Kind of hedging your bets don’t you think?
While U.S. soldiers fighting in Iraq and Afghanistan are surviving injuries that in previous conflicts likely would have been fatal, the number of wounded with major tissue loss has never before been so high. Such injuries – the partial or complete loss of digits or limbs and deforming facial injuries – have profoundly affected the quality of life of the wounded as well as presented a new set of challenges for the medical community faced with treating them.
Recognizing the need for novel approaches that can restore, even partially, the structure and function of lost or damaged tissues, the Defense Advanced Research Projects Agency (DARPA) has awarded a $3.7 million grant to the University of Pittsburgh’s McGowan Institute for Regenerative Medicine to oversee an ambitious, multi-center research program to better understand the intricate processes involved in wound healing and tissue restoration. A large part of the team’s effort will involve examining the cellular and molecular systems that allow certain animals to completely regenerate lost tissue. The ultimate goal of the research is to identify ways for enhancing the capacity for wound healing and tissue restoration in humans.
To some extent, humans already have the capacity for regeneration. For instance, certain cells, such as liver cells and red blood cells, can self-renew; and during embryonic development mammals and birds can regenerate such diverse tissues and structures as their skin and spinal cord. However, humans can’t perform the same trick of regrowing a severed limb like salamanders or newts can. That is because in humans the cells that respond to the site of injury form scar tissue, whereas in salamanders the responding cells are genetically programmed to become the cell types of the lost structure, with full limb growth complete by two months.
When a salamander loses a limb, the wound sends out molecular signals that prompt surrounding tissue to begin production of new progenitor cells, also referred to as precursor cells. These progenitor cells continue to divide and form a large pool of cells at the wound site, called a blastema, that will later specialize and mature to help form the bone, muscle, cartilage, nerves and skin of the regenerated limb.
The press release…