A novel way to see early neoplasms with “angle-resolved low coherence interferometry” (a/LCI) technology, from researchers at Duke University’s Pratt School of Engineering:
Previous studies by Wax’s team used a/LCI to identify pre-cancer in animal tissue. Pre-cancerous cells are characterized by an enlarged nucleus, the structure that houses the cell’s genetic material. It is such cellular changes that pathologists rely on to identify cancer in biopsied tissue, Wax said. [Adam Wax is a professor of biomedical engineering at Pratt -ed.]
The a/LCI device emits light that scatters when it hits the cell nucleus. To enable a/LCI to be used as a diagnostic technology, the researchers developed a model of how light is scattered by the nucleus of healthy cells versus cancerous ones.
“What really sets a/LCI apart is its ability to focus on light scattered from a single cell layer,” Wax said.
The device is also fast, he added. While early versions of the technology required up to 30 minutes to scan a 1 millimeter point, further development led to a “Fourier-domain” device (faLCI) that captures the same information in a fraction of a second, Wax said.
The researchers now have devised an endoscopic fiber bundle probe incorporated into the faLCI system. Endoscopes are thin, flexible tools used to examine the inner lining of the esophagus. In laboratory tests, the endoscopic faLCI probe could precisely and accurately determine the size of tiny polystyrene beads in solution, the team found. The beads represented a clinically relevant size range comparable to the dimensions of nuclei found in normal to cancerous tissue.
More…