An interesting robotic system, developed by a group of mechanical and aerospace engineers from the University of Florida, is designed to view an orthopedic patient’s performance, in particular to see joints in action in a variety of tasks:
A University of Florida engineer has designed a robot to shadow and shoot X-ray video of sufferers of orthopedic injuries as they walk, climb stairs, stand up from a seated position or pursue other normal activities – and maybe even athletic ones like swinging a bat.
UF mechanical and aerospace engineer Scott Banks’ goal is to augment static images of patients’ bones, muscles and joints with an interior view of these and other parts in action during normal physical activity. By merging such full-motion X-rays with computerized representations, orthopedic surgeons will make better diagnoses, suggest more appropriate treatments and get a clearer idea of post-operative successes and failures, he said…
Banks hopes his robot – actually, a system that uses two robots because one robot will be necessary to shoot the X-ray video and another to hold the image sensor – will lead to a radical improvement.
He has one working robot currently. The robot, which has a one-meter mechanical arm, is a commercial product normally used in robotically assisted surgeries and silicon chip manufacturing that Banks and his graduate students have re-engineered. The robot can shadow a person’s knee, shoulder or other joint with its hand as he or she moves.
In its completed form, the hand will hold lightweight equipment capable of shooting X-rays, while another robot will hold the sensor that captures images of the body as moving videos. Although the robots will be attached to a fixed base, there is room for a person to move around normally within their reach. And in the future, said Banks, “we could put these robots on wheels and they could follow you around.”
For now, the single robot holds a standard video camera.
To use it, a patient wears an LED-lit patch on the body part that is intended for targeting. The patch, several cameras placed around the room and a networked computer command the robots to hone in on and track the joint.
More from the University of Florida…
(hat tip: WMMNA)