From MIT’s Technology Review comes news about a new method of hepatocyte cell culture, designed to preserve the liver cell’s function and phenotype in a dish. This is important, because determining the liver toxicity of new drugs is an important and expensive step. If more drug screens can be done in vitro, more lives will be saved:
In the past, such screenings have been difficult because actual liver cells, once they are taken from the body, stop acting like liver cells within a day. But now Sangeeta Bhatia, an M.D., medical engineer, and associate professor at MIT, has found a way to keep liver cells doing their job for weeks. What’s more, she has developed a method for arranging them in multiple test wells, allowing drug researchers to screen multiple compounds at the same time…
Bhatia’s innovation was to develop a way of organizing the liver cells using photolithography, the same process used to create computer microprocessors. First, a pattern is created in test wells for a layer of proteins. Then liver cells are applied, which stick to the proteins, replicating the patterns. Finally, supportive cells are added, filling in around the liver cells…
Applying a technique called “soft lithography,” which uses a polymer stencil to pattern the proteins, Bhatia found patterns that let human liver cells function for a month. Then she tested to see if these liver cells could correctly predict the effect that drugs would have on a human liver.
It worked: the more toxic a drug was known to be, the more toxic its effect was on her mini-livers. Indeed, one of the drugs that showed up as highly toxic in her tests had already been pulled from the market after causing problems in humans.
More from MIT’s Multiscale Regenerative Technologies Lab…