The University of Delaware is reporting that its researchers have developed a unique nanobomb that can literally blow up the cancer tissue. The research was led by Dr. Balaji Panchapakesan, assistant professor of electrical and computer engineering, and was reported in the journals NanoBiotechnology and Oncology Issues.
As they undertook various experiments, however, the team made a startling discovery. “When you put the atoms in different shapes and forms, they take on different properties at the nanoscale,” Panchapakesan said. “We were experimenting with the molecules and considering optical and thermal properties, and found we could trigger microscopic explosions of nanotubes in wide variety of conditions.”
Explosions in air of loosely packed nanotubes have been seen before in an oxygen environment, creating ignition. However, the work reported by Panchapakesan uses the localized thermal energy imbalance to set off explosions that are intrinsic in nature.
Panchapakesan said the nanobombs are just that, tiny bombs on the nanoscale. “They work almost like cluster bombs,” he said. “Once they are exposed to light and the resulting heat, they start exploding one after another.”
The bombs are created by bundling the carbon nanotubes. With a single nanotube, the heat generated by the light is dissipated by surrounding air. In bundles, the heat cannot dissipate as quickly and the result is “an explosion on the nanoscale,” Panchapakesan said.
When the UD researchers saw the explosions, they realized it might be possible to use the microscopic bombs to kill cancer cells. They recreated the explosions in solutions including water, phosphate and salt, which meant the nanobombs could be used in the human body. In fact the explosions were more dramatic in saline solutions, Panchapakesan said.
“The nanobomb is very selective, very localized and minimally invasive,” Panchapakesan said. “It might cause what I would call nanopain, like a pin prick.”
He believes the nanobomb holds great promise as a therapeutic agent for killing cancer cells, with particular emphasis on breast cancer cells, because its shockwave kills the cancerous cells as well as the biological pathways that carry instructions to generate additional cancerous cells and the small veins that nourish the diseased cells. Also, it can be spread over a wide area to create structural damage to the cancer cells that are close by.
The nanobombs are superior to a variety of current treatments because they are powerful, selective, non-invasive, nontoxic and can incorporate current technology, including microsurgery.
Picture caption: Laser light ignites bundles of nanotubes, which explode like tiny cluster bombs.
More at the University of Delaware press office…