Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory have used the National Synchrotron Light Source accelerator (no less!) to peer inside the bacteria. The technique might open new frontiers in our understanding of bacterial microbiology:
Called x-ray spectromicroscopy, the method uses the extremely bright x-rays available at Brookhaven’s National Synchrotron Light Source (NSLS) — but not just to take pictures. At the NSLS, the scientists can actually “tune” the energy level of the beam to measure subtle differences in the energy absorbed by different forms of carbon. This carbon absorption spectrum, or “fingerprint,” reveals detailed biochemical information about what is inside and around the bacterial cells — and can even detect the formation of bacterial spores at an early stage invisible to other methods.
“We are starting to learn a lot more about the molecular chemistry of these bacteria,” said Gillow. “The goal is to understand better how they interact with metals and radionuclides.”
The technique may also reveal details about the process of bacterial spore formation. This could be important to environmental cleanup because spore-forming microbes often live in contaminated environments. It might also offer new targets for the detection of weaponized bacteria (by finding spores at an early stage), or help thwart disease or a terrorist attack by finding ways to prevent the spores from germinating into active, infective bacterial cells.
Picture caption: This figure shows a single cell of Clostridium sp. (a strictly-anaerobic, soil-dwelling bacterium) as imaged by scanning trasmission x-ray spectromicroscopy (left). By analyzing the x-ray absorption spectrum, scientists can pick up subtle biochemical differences between the bulk of the cell body (yellow) and a tiny spore (green) forming inside. This early stage of spore formation would be invisible to other imaging techniques.
The press release…