The American Institute of Physics is reporting about interesting research coming from Stanford:
Researchers at Stanford University have demonstrated a promising, minimally invasive optical technique that can capture micron-scale images from deep in the brains of live subjects. The method, called two-photon microendoscopy, combines a pair of powerful optical and mechanical techniques into one device that fits in the palm of the hand. The results appear in the September 1, 2005 issue of Optics Letters, a journal published by the Optical Society of America…
Scientists often use some form of fluorescence microscopy to image tissue. In conventional “one-photon” fluorescence imaging, the scientist injects a dye into tissue and then shines a bright light. The tissue fluoresces, or radiates, light of a different color in response. However, a problem with one-photon fluorescence is that the deep tissue causes the photons to ricochet, or scatter, as they return to the detector. The result is a background haze in the images, almost like viewing the sample through a cloud.
It’s possible to get rid of background haze and reduce the scattering using two-photon fluorescence imaging. Instead of one higher-energy photon, researchers bombard the molecule with two photons of lower energy. Their combined energies total the energy required to excite the fluorescent-dye molecules used to mark the tissue. The technique gets rid of the background haze and reduces scattering, because molecules outside the area of interest are much less likely to absorb a pair of photons simultaneously and fluoresce in response.
While two-photon microscopy offers an alternative to traditional one-photon fluorescence microscopy, it still only penetrates brain tissue down to about 500-600 microns–barely scratching the surface. To get at the deep structures, the Stanford researchers turned to microendoscopy, tiny, minimally invasive optical probes that could be inserted deep into living brain tissue…
When combined with two-photon fluorescence, the result is a system that brings the power of a cutting-edge imaging technique to the deep tissues of the brain. By creating a handheld device based on some of the latest advances in micromotors, lensing and fiber optics (see accompanying article for more information), the researchers were able to establish a new technique that enables them to obtain microscopic images deeper in the living brain than was possible before microendoscopy.
The press release…
Schnitzer Group at Stanford…
GRIN Lenses used in microendoscope (.pdf) article at Biophotonics International (2004)…