A research team from the State University of New York at Buffalo has created nanoparticles that deliver genes into neurons in the brains of living mice “with an efficiency that is similar to, or better than, viral vectors and with no observable toxic effect.” The research, published in the current issue of the Proceedings of the National Academy of Sciences, could potentially revolutionize diagnosis and treatment of neurologic disorders.
From the press release:
The paper describes how the UB scientists used gene-nanoparticle complexes to activate adult brain stem/progenitor cells in vivo, demonstrating that it may be possible to “turn on” these otherwise idle cells as effective replacements for those destroyed by neurodegenerative diseases, such as Parkinson’s.
In addition to delivering therapeutic genes to repair malfunctioning brain cells, the nanoparticles also provide promising models for studying the genetic mechanisms of brain disease…
The UB researchers make their nanoparticles from hybrid, organically modified silica (ORMOSIL), the structure and composition of which allow for the development of an extensive library of tailored nanoparticles to target gene therapies for different tissues and cell types.
A key advantage of the UB team’s nanoparticle is its surface functionality, which allows it to be targeted to specific cells, explained Dhruba J. Bharali, Ph.D., a co-author on the paper and post-doctoral associate in the UB Department of Chemistry and UB’s Institute for Lasers, Photonics and Biophotonics.
While they are easier and faster to produce, non-viral vectors typically suffer from very low expression and efficacy rates, especially in vivo.
“This is the first time that a non-viral vector has demonstrated efficacy in vivo at levels comparable to a viral vector,” Bharali said.
In the UB experiments, targeted dopamine neurons — which degenerate in Parkinson’s disease, for example — took up and expressed a fluorescent marker gene, demonstrating the ability of nanoparticle technology to deliver effectively genes to specific types of cells in the brain.
Using a new optical fiber in vivo imaging technique (CellviZio developed by Mauna Kea Technologies of Paris), the UB researchers were able to observe the brain cells expressing genes without having to sacrifice the animal.
The press release…
The Institute for Lasers, Photonics and Biophotonics at the University at Buffalo…