Interesting nanomedicine research is coming out of UCSF and Georgia Tech:
“Gold nanoparticles are very good at scattering and absorbing light,” said Mostafa [Mostafa El-Sayed, PhD, director of the Laser Dynamics Laboratory and professor at Georgia Tech -ed.]. “We wanted to see if we could harness that scattering property in a living cell to make cancer detection easier. So far, the results are extremely promising.”
Many cancer cells have a protein, known as epidermal growth factor receptor (EFGR), all over their surface, while healthy cells typically do not express the protein as strongly. By conjugating, or binding, the gold nanoparticles to an antibody for EFGR, suitably named anti-EFGR, the researchers were able to get the nanoparticles to attach themselves to the cancer cells.
“After we added the nanoparticle-bound antibody to cells, using a simple technique known as darkfield microscopy, we saw the cancer cells light up under the microscope,” said Ivan. “The healthy cells don’t bind the particles well and are dark compared to the cancer. Since the particles have color, we can test multiple antibodies at the same time with a white light. Using simple optics, we can develop low cost techniques for rapid automated detection of cancer in biopsies. Further, we hope to use the scattering and absorption properties to develop techniques to detect cancer in humans without a biopsy.”
In the study, the research team found that the gold nanoparticles have 600 percent greater affinity for cancer cells than for noncancerous cells. The researchers tested their technique using cell cultures of two different types of oral cancer and one nonmalignant cell line. They found two features of the particles to be useful for cancer detection. First, with a microscope, they could see the cells shining. Second, they could measure changes in the amount of light absorbed by the particle as the antibody bound to its target.
More at UCSF…