The research out of the University of Florida:
… it is difficult to tell whether babies are epileptic because they are often asleep. Even when awake, they cannot provide clues through their speech, nor do abnormal movements necessarily indicate a seizure.
One way for doctors to be certain whether a newborn is having a seizure is through a diagnostic test called an electroencephalogram, or EEG, which monitors electrical activity through electrodes placed on a patient’s scalp. But the test is expensive, requires a high level of training to interpret and often isn’t readily available in hospitals.
“An EEG provides a squiggly line readout of brain activity,” said Dr. Paul Carney, chief of pediatric neurology at UF’s College of Medicine and a professor at the B.J. and Eve Wilder Center for Excellence in Epilepsy Research at the McKnight Brain Institute. “Our goal is to take our findings and develop a tool that can run in real time right next to the blood pressure and other monitoring devices in a hospital. If successful it would be one of the first brain function monitors for clinical use in the neonatal intensive care unit.”
UF researchers presenting today (5-17) at the annual meeting of the Pediatric Academic Societies in Washington, D.C., say they can convert an EEG readout into a quantitative value. For example, a reading of “20” would indicate normal brain activity and a reading of “10” would indicate a seizure.
They tested their idea by reviewing the EEGs of 35 babies up to a month old, 23 of whom had normal brain function. They were able to pinpoint the newborns at risk for seizures through differences in key statistical values of brain activity.
“An experienced pediatric neurologist and electroencephalographer could certainly distinguish abnormal from normal newborns by reviewing their EEGs,” said Deng-Shan Shiau, an assistant research neuroscientist at UF’s Brain Dynamics Laboratory. “However, from my understanding, for abnormal neonates with lower degrees of severity, abnormal EEG patterns may only be obvious in a few segments in the entire recording. Quantitative EEG analysis may help doctors quickly identify these segments and determine if a neonate is normal.”
The researchers and UF have applied for a patent for the technology.
The press release…