Haptics is defined as “the science of applying touch (tactile) sensation and control to interaction with computer applications.” Viterbi School of Engineering at the University of Southern California is developing technology that might benefit patients with poststroke neurodeficits:
Stroke patients who face months of tedious rehabilitation to regain the use of impaired limbs may benefit from new haptics systems — interfaces that add the sense of touch to virtual computer environments — in development at the University of Southern California’s Integrated Media Systems Center (IMSC).
The new systems, being designed by an interdisciplinary team of researchers from the Viterbi School of Engineering and the Annenberg School for Communication, are challenging stroke patients to grasp, pinch, squeeze, throw and push their way to recovery.
With a $1.8-million grant from the National Institutes of Health (NIH), the team has come up with quite an assortment of new applications. Some are designed to make stroke survivors stack, push or pour liquid out of three-dimensional objects in immersive environments, while other tasks force them to pick up objects and move them through cyberspace corridors without bumping into walls or falling into booby traps.
“Haptics, which adds the sense of touch to 3-D computing, lets stroke patients interact with virtual worlds by feel,” said Margaret McLaughlin, an IMSC investigator and professor of communication at the USC Annenberg School for Communication. “The big advantage is that we can control the environment and design cyber tasks that target each patient’s impairment.”
McLaughlin, who is a co-editor of Touch in Virtual Environments, works with researchers at the Keck School of Medicine of USC to design the new haptics technologies.
“The technology got its start in commercial gaming, with the debut of inexpensive, non-immersive versions using force-feedback joysticks and steering wheels that vibrated as the driver sped along a video racetrack,” she said. “But in university laboratories, the availability of more sensitive, high-end devices that could render touch sensations in three dimensions quickly led to applications in more serious pursuits.”
Haptics interfaces began to emerge in such fields as medical and surgical training programs, flight school, teleoperations and scientific visualization. In 2004, NIH saw a need for the technology among stroke survivors, said principal investigator Thomas McNeill, professor of cell and neurobiology, neurology and neurogerontology at the Keck School, and awarded USC and the University of Texas, Austin, a grant to pursue the work.
The press release…
Much more is here…